Input Product: Patch-Based E/B Convergence Maps Parameters for Clusters

Data product name

twoDMassParams2DConvergenceClusters

Data product custodian

2D-MASS-WL

Data model tag

(TBF for ML2A)

Name of the Schema file

euc-test-le3-wl-twodmass-ParamsConvergenceClusters.xsd

Schema documentation tag

Data product documentation:

Data Product for twoDMassParams2DConvergenceClusters.

Documentation for data product element dpdTwoDMassParamsConvergenceClusters:

This product contains input parameters to compute the 2D convergence maps for clusters studies.

Documentation for data product element Header:

The generic header of the product

Documentation for data product element Data:

The data of the product

Data product elements

Header of type: sys:genericHeader

Data of type: wl2dmass:twoDMassParamsConvergenceClusters

QualityFlags of type: dqc:sqfPlaceHolder

Parameters of type: ppr:genericKeyValueParameters

Processing Element(s) creating/using the data product

2D-MASS-WL

Processing function using the data product

LE3

Detailed description of the data product

To compute the E/B convergence maps associated to detected (and sufficiently massive clusters), the following set of parameters is needed:

  • how to handle reduced shear:

    • NItReducedShear: the number of iterations used to compute the reduced shear [int]

    • denoising parameters for reduced shear:

      • RSThreshold: Threshold to perform hard-thresholding in the reduced shear iteration

      • GaussSTD: the standard deviation for the Gaussian filter [double]

      • ThresholdFDR: the False Discovery Rate (FDR) threshold if applied [optional, double]

  • denoising parameters for final map: if Gaussian smoothing is performed, the value of the

    • DenoisingAlgo: Name of denoising algo [string]

    • GaussSTD: the standard deviation for the Gaussian filter [double]

    • ThresholdFDR: the False Discovery Rate (FDR) threshold if applied [optional, double]

  • NResamples: the number of resampling that needs to be performed for Noise/SNR maps [int]

  • how to select from the cluster catalogue:

    • MassThreshold: the threshold in mass (or mass proxy) [double]

  • how to handle the projection,

    • Project: what type of projection [stc:projection]

    • PatchWidth: size of the patches [double]

    • PixelSize: physical size of pixel [double]

  • how to handle redshift:

    • ZMargin: redshift margin used to include only background galaxies [double]

    • ZMax: max redshifts for the patches considered [double]

    • ZMaxHalo: Maximal redshift of the halo to be kept in the cluster catalog selection [double].

  • how to handle gaps in data:

    • NInpaint: number of inpainting iterations [int]

    • EqualVarPerScale: , if a constraint is applied to have equal variance in/out of the masked area per wavelet scale [bool]

    • ForceBMode: Flag to force B Modes to 0 in the gaps [bool]

    • NInpScale: number of wavelet scales for inpainting [int]

    • AddBorder: if an extra border is taken into account [bool]